Homogenization of Steklov Spectral Problems with Indefinite Density Function in Perforated Domains

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogenization of variational functionals with nonstandard growth in perforated domains

The aim of the paper is to study the asymptotic behavior of solutions to a Neumann boundary value problem for a nonlinear elliptic equation with nonstandard growth condition of the form −div ( |∇u|ε ∇u ) + |u|ε u = f(x) in a perforated domain Ω, ε being a small parameter that characterizes the microscopic length scale of the microstructure. Under the assumption that the functions pε(x) converge...

متن کامل

Numerical Homogenization for Indefinite H(curl)-problems

In this paper, we present a numerical homogenization scheme for indefinite, timeharmonic Maxwell’s equations involving potentially rough (rapidly oscillating) coefficients. The method involves an H(curl)-stable, quasi-local operator, which allows for a correction of coarse finite element functions such that order optimal (w.r.t. the mesh size) error estimates are obtained. To that end, we exten...

متن کامل

The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains

In this contribution we analyze a generalization of the heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains. The method was originally introduced by E and Engquist (Commun Math Sci 1(1):87–132, 2003) for homogenization problems in fixed domains. It is based on a standard finite element approach on the macroscale, where the stiffness matrix i...

متن کامل

Homogenization of spectral problems in bounded domains with doubly high contrasts

Homogenization of a spectral problem in a bounded domain with a high contrast in both stiffness and density is considered. For a special critical scaling, two-scale asymptotic expansions for eigenvalues and eigenfunctions are constructed. Two-scale limit equations are derived and relate to certain nonstandard self-adjoint operators. In particular they explicitly display the first two terms in t...

متن کامل

Homogenization of Spectral Problems and Localization Effects

We describe classical and new results concerning the limit behaviour of spectral problems in a periodically perforated domain, with special attention to some cases where the eigenfunctions localize.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Applicandae Mathematicae

سال: 2012

ISSN: 0167-8019,1572-9036

DOI: 10.1007/s10440-012-9765-4